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We develop a model for a turbulent plume in an unbounded ambient that takes into
account a general exothermic or endothermic chemical reaction. These reactions can
have an important effect on the plume dynamics since the entrainment rate, which
scales with the vertical velocity, will be a function of the heat release or absorption.
Specifically, we examine a second-order non-reversible reaction, where one species is
present in the plume from a pure source and the other is in the environment. For
uniform ambient density and species fields the reaction has an important effect on
the deviation from pure plume behaviour as defined by the source parameter Γ .
In the case of an exothermic reaction the density difference between the plume and
the reference density increases and the plume is ‘lazy’, whereas for an endothermic
reaction this difference decreases and the plume is more jet-like. Furthermore, for
chemical and density-stratified environments, the reaction will have an important
effect on the buoyancy flux because the entrainment rate will not necessarily decrease
with distance from the source, as in traditional models. As a result, the maximum
rise height of the plume for exothermic reactions may actually decrease with reaction
rate if this occurs in a region of high ambient density. In addition, we investigate
non-Boussinesq effects, which are important when the heat of reaction is large
enough.

1. Introduction
Convection induced by chemical reactions is an important process in many

industrial and environmental settings. For example, a plume will develop above
a pool fire if the vaporization rate is large enough (Tieszen 2001). The plume
forms with two distinct stages. In the first stage a reacting plume rises above
the fuel source in which hot buoyant fuel mixes with entrained ambient air. The
highly exothermic reaction increases the buoyancy of the plume until the initial
plume species is completely consumed. In the second stage, from this height up,
the plume behaves as a non-Boussinesq plume without reaction and with a virtual
origin correction. Many industrial chemicals are pyrophoric materials and undergo a
reaction with air or water vapour at normal ambient condition. An accidental release
of such a buoyant chemical in an occupied space is potentially very hazardous. In
the aqueous phase, there are many acid–base reactions, such as the neutralization
reaction between sodium hydroxide and hydrochloric acid, which can be exothermic
(Patnaik 1999).

A similar process occurs in relation to evaporative cooling which has been used
for years in cooling towers to cool circulated water (Fisenko, Brin & Petruchik 2004)
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and in air-conditioning systems in hot dry climates. The fundamental fluid-dynamical
aspect of this problem is the presence of a distribution of water droplets with variable
size and concentration within a turbulent plume. As the plume entrains ambient fluid,
the water droplets will evaporate (provided the air is sufficiently dry) in order to
maintain the equilibrium vapour concentration. Latent heat will be absorbed, thus
increasing the density of the gaseous phase. This will couple to the plume dynamics
through the buoyancy force.

The plume theory developed by Morton, Taylor & Turner (1956, henceforth
MTT56) relies on an entrainment assumption that scales the rate at which turbulent
eddies are engulfed into the plume with the centreline velocity. This assumption leads
to a simple set of equations describing the flux of volume, momentum and buoyancy.
The Boussinesq approximation is often used, but is not always appropriate. A rational
derivation of the non-Boussinesq plume equations was given by Rooney & Linden
(1996). In all plume models the buoyancy flux is a function of ambient stratification
and the plume will keep rising in an unstratified or weakly stratified ambient, although
in a stratified ambient the plume will reach a maximum height (Caulfield & Woods
1998).

Chemistry was added to the original plume model of MTT56 by Conroy,
Llewellyn Smith & Caulfield (2005, henceforth CLSC) for a passive chemical
reaction that decouples from the plume dynamics. The species concentrations in
the plume are treated in the same fashion as the dynamic fluxes, starting from the
conservation of species. CLSC considered the ventilated filling box problem and
compared experiment to theory, finding good agreement. However, in cases where the
reaction is strongly exothermic or endothermic, this model is inadequate since the
buoyancy flux must be modified to account for the heat absorption or release due to
reaction.

Plumes with volumetric heating supplied by a line source of heat were investigated
experimentally and theoretically by Bhat & Narashima (1996). This model was
extended by Hunt & Kaye (2005) to analyse the plume-like or jet-like nature of
plumes with an internal buoyancy flux gain represented as a constant source of heat.
However, these studies were not concerned with exothermic or endothermic reactions
between the source fluid and the ambient.

In this paper we generalize previous work on turbulent plumes to include a general
reaction mechanism with a non-negligible heat of reaction. The buoyancy flux is a
function of the addition or removal of heat by the chemical reaction. Hence it can
be a non-uniform function of height and is coupled to the entrainment rate. Since
many reactions have a large chemical heat release we consider both non-Boussinesq
plumes and Boussinesq plumes. We limit ourselves to pure plume source conditions,
following MTT56, Rooney & Linden (1996), Caulfield & Woods (1998) and others,
although a forced plume can be investigated in a similar fashion.

The paper is organized as follows. In § 2, we formulate the energy equation in
terms of density, taking into account the heat of reaction. The reaction mechanism
is expressed in general terms but we limit ourselves subsequently to a second-order
non-reversible reaction for comparison with CLSC, and also to perfect gases. In § 3
we develop the plume model following MTT56 for a Boussinesq plume, which is valid
for sufficiently small heats of reaction. We examine the deviation from pure plume
behaviour with uniform ambient density and species stratification and investigate the
maximum rise height in ambient chemical stratifications with power law behaviour.
In § 4 we extend the analysis to non-Boussinesq plumes. Finally we conclude in
§ 5.
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Figure 1. Pure plume entering an infinite ambient with concentration R2 of species 2 from a
source with concentration P10 of species 1.

2. Model description
2.1. Governing equations

We consider a body of fluid rising in an infinite medium due to the action of buoyancy
forces with a sufficiently large velocity so that diffusion of momentum, energy and
species is negligible. An exothermic or endothermic chemical reaction is allowed to
occur within the body, thus increasing or decreasing the buoyancy force acting on the
plume fluid. Figure 1 shows the configuration. We allow for compressibility effects,
and the shape of the plume is modified by the reaction. In general an unsteady,
reacting high-Reynolds-number three-dimensional flow with negligible diffusion is
governed by the equations (Williams 1985)

Dρ

Dt
+ ρ∇ · v = 0, (2.1a)

ρ
Dv

Dt
= ∇p + ρg, (2.1b)

ρ
De

Dt
= −p∇ · v, (2.1c)

ρ
DYi

Dt
= ωi. (2.1d)

Here ρ is the density, v is the bulk fluid velocity, p is the pressure, g is the acceleration
of gravity downwards, e is the internal energy, Yi = ρi/ρ is the mass fraction of species
i and ωi is the reaction rate which will be specified in § 2.2. We define the enthalpy
h = e + p/ρ to be an average enthalpy of the mixture with

h =

N∑
i=1

hiYi and hi = ho
i +

∫ T

T0

Cp,i dT ,

where ho
i is the standard enthalpy at the standard temperature, T0, and Cp,i is the

specific heat of species i.
We seek an alternative form to equation (2.1c) that describes the change in density

of a material particle due to reaction effects. In general the change in internal energy



294 D. T. Conroy and S. G. Llewellyn Smith

of a fluid particle is governed by the first and second laws of thermodynamics as
follows:

de = T ds − p d(1/ρ) +

N∑
i=1

(µi/Wi) dYi, (2.2)

where s is the entropy, µi is the chemical potential and Wi is the molecular weight of
species i. Substituting this relationship and (2.1a) into (2.1c) yields

Ds

Dt
= − 1

T

N∑
i=1

µi

Wi

DYi

Dt
, (2.3)

which expresses the rate of production of entropy by the irreversible chemical reaction.
On substituting this equation into the mathematical identity

Dρ

Dt
=

(
∂ρ

∂p

)
s,Yi

Dp

Dt
+

(
∂ρ

∂s

)
p,Yi

Ds

Dt
+

N∑
i=1

(
∂ρ

∂Yi

)
s,p,Yj (i �=j )

DYi

Dt
, (2.4)

one can show by thermodynamic arguments (cf. e.g. Clarke and McChesney 1964)

Dρ

Dt
=

1

a2
f

Dp

Dt
+ ρ

N∑
i=1

[
β

Cp

(
∂h

∂Yi

)
p,T ,Yj (i �=j )

− ρ

(
∂ρ−1

∂Yi

)
p,T ,Yj (i �=j )

]
DYi

Dt
(2.5)

where af is the frozen speed of sound defined by a2
f = (∂p/∂ρ)s,Yi

, β = ρ(∂ρ−1/∂T )p,Yi

is the frozen volumetric thermal expansion coefficient and Cp = (∂h/∂T )p,Yi
is the

frozen specific heat at constant pressure.
For a perfect gas with equation of state p = ρRT

∑N

i=1 Yi/Wi = ρRT Ȳ , evaluating
the derivatives gives

Dρ

Dt
=

1

a2
f

Dp

Dt
+

β

Cp

N∑
i=1

hiωi − 1

Ȳ

N∑
i=1

ωi

Wi

=
1

a2
f

Dp

Dt
+ ρσ. (2.6)

This equation represents the change in density due to pressure, chemical energy
released or absorbed by reactions and changes in mixture concentrations. The latter
two changes are grouped into σ . In general the first term can be neglected for fluid
velocities that are small compared to the speed of sound, and we do so here.

For steady flow with no swirl, i.e. v = (u, 0, w) in cylindrical coordinates (r, θ, z),
the equations underlying plume dynamics can be written in almost-conservative form
as

1

r

∂

∂r
(ruρ) +

∂

∂z
(wρ) = 0, (2.7a)

1

r

∂

∂r
(ruwρ) +

∂

∂z
(w2ρ) = g(ρa − ρ), (2.7b)

u
∂ρ

∂r
+ w

∂ρ

∂z
= ρσ, (2.7c)

1

r

∂

∂r
(ruρYi) +

∂

∂z
(wρYi) = ωi (2.7d)

for mass, vertical momentum, energy and species respectively, using (2.6). We have
assumed the plume to be thin so that ∂rp � ∂zp, in which case the pressure may
be shown to be hydrostatic: dp/dz = −ρag, where ρa(z) is the ambient fluid density
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(Rooney & Linden 1996). The additional term in (2.7c) is due to fluid expansion or
compression via reaction, while the additional term in (2.7d) is due to reaction.

For Boussinesq plumes, the equations simplify to

1

r

∂

∂r
(ru) +

∂w

∂z
= 0, (2.8a)

1

r

∂

∂r
(ruw) +

∂w2

∂z
=

g

ρ0

(ρa − ρ), (2.8b)

u
∂ρ

∂r
+ w

∂ρ

∂z
= ρ0σ, (2.8c)

1

r

∂

∂r
(ruYi) +

∂

∂z
(wYi) =

ωi

ρ0

, (2.8d)

where ρ0 is a reference density. Here the mass fractions are given by Yi = ρi/ρ0. The
flow is incompressible, but density can change due to the reactions. If σ � 1, the
right-hand side of (2.8c) vanishes and we recover the equations of CLSC.

2.2. Chemical reaction mechanism

In general we can represent the chemical reaction mechanism as (Williams 1985)

ωi = Wi

n∑
k=1

(ν ′′
i,k − ν ′

i,k)Kk

N∏
j=1

c
ν ′
j,k

j , (2.9)

where cj = Yjρ/Wj is the molar concentration of species j , Kk is the rate
constant (in general a function of temperature) of the kth reaction, ν ′

i,k is the
stoichiometric coefficient of reactants and ν ′′

i,k is the stoichiometric coefficient of
products. Conservation of mass at the molecular level implies that

∑
i ωi = 0, which

can also be written as a constraint on the Wi , ν ′′
i,k and ν ′

i,k .
In this paper we will only consider second-order reactions of the form c1 + c2 → c3,

although other forms are possible. Therefore

ωi = ±WiKc1c2 = ±KWiρ
2

W1W2

Y1Y2, (2.10)

where the sign is negative for ω1 and ω2, and positive for ω3. Note that W1 +W2 = W3.
In the case of the perfect gas we have the following expression:

ρσ =

[
β

Cp

(−h1W1 − h2W2 + h3W3) +
1

Ȳ

]
Kρ2

W1W2

Y1Y2 = Ωρ2Y1Y2, (2.11)

which defines Ω . The term in parentheses is just the heat of reaction 
Hr , which
is positive for an endothermic reaction. The Ȳ term is present for the second-order
reaction considered here, but in general is multiplied by a numerical factor which can
be zero.

In the Boussinesq case, ρ in (2.10) is to be replaced by ρ0, and all quantities in
(2.11) are to be evaluated using the reference value ρ0 for ρ. While Ω is in general
a function of temperature (through K and hi) and of pressure (since by the perfect
gas law T is a function of ρ, p and Yj ), we ignore these considerations here and
take Ω and K to be constant. This is because the pressure dependence, which enters
via the hydrostatic relation, is very weak unless the plume extends very high, while
the temperature dependence is negligible unless the reaction is very exothermic or
endothermic. In the non-Boussinesq case the change in density will be significant, but



296 D. T. Conroy and S. G. Llewellyn Smith

we can ignore the thermal dependence of the properties provided the coefficient of
thermal expansion, β , is sufficiently large.

3. Boussinesq plume
3.1. Plume equations

We consider an isolated source of buoyancy released into an infinite environment.
Following MTT56 we define the plume volume flux πQ, momentum flux πM ,
buoyancy flux πB and species flux πPi as follows:

πQ(z) = 2π

∫ ∞

0

rw dr = πw̄b2, (3.1a)

πM(z) = 2π

∫ ∞

0

rw2 dr = πw̄2b2, (3.1b)

πB(z) = 2π

∫ ∞

0

rwg
ρa − ρ

ρ0

dr = πg
ρa − ρ̄

ρ0

w̄b2 = πg′w̄b2, (3.1c)

πPi(z) = 2π

∫ ∞

0

Yirw dr = πȲiw̄b2. (3.1d)

We take top hat profiles for quantities in the plume so that the integrals extend to b,
the plume width, and quantities with overbars are functions of z only. Here g′ is the
reduced gravity of the plume relative to the local ambient fluid.

The plume equations for volume and momentum flux are as in MTT56:

dQ

dz
= 2αM1/2,

dM

dz
=

BQ

M
. (3.2)

Note that b2 = Q2/M , w̄ = M/Q and α is the entrainment constant. The buoyancy
flux is found by differentiating (3.1c) with respect to height and using (2.8a) and
(2.8c), yielding

ρ0

2g

dB

dz
=

∫ ∞

0

rw
dρa

dz
dr −

∫ ∞

0

ρ0σr dr +

∫ ∞

0

ru(ρ−ρa)r dr −
∫ ∞

0

(ρa −ρ)(ru)r dr. (3.3)

The last two terms integrate to zero and we find

dB

dz
= −N2Q − gσ

Q2

M
, (3.4)

where N2 = −(g/ρ0)dρa/dz. The first term represents the decrease in buoyancy flux
by entrainment and the second represents its increase by an exothermic reaction
or decrease by an endothermic reaction and changes in average molecular weights.
Integrating (2.8d) across the plume gives

dPi

dz
= 2αRiM

1/2 +
ωi

ρ0

Q2

M
, (3.5)

where Ri is the mass fraction of species i in the ambient. The first term represents
the increase in species flux by entrainment, whereas the second term represents a
decrease (for reactants) or increase (for products) by chemical reaction. By using top
hat profiles we are taking the plume to be a well-mixed reactor, as is commonly
used for combustion studies (Williams 1985). This is possible provided the time scale
for reaction is slower than the turbulent mixing by small-scale motions. Following
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Komori et al. (1990) we require the Damköhler number Da = (ν/ε)1/2K(c1c2)
1/2 to be

small, where ν is the kinematic viscosity and ε is the viscous dissipation.
To compute the right-hand sides of these equations for our case, we express

concentrations in terms of fluxes through the plumes using Pi = QȲi . Then, replacing
Yi by Ȳi so as to work with plume variables, as in the derivation of the equation for
dM/dz above, we have

ωi

ρ0

Q2

M
= ±KWiρ0

W1W2

P1P2

M
= ψi

P1P2

M
, (3.6)

and similarly

gσ
Q2

M
= gΩρ0Y1Y2

Q2

M
= gρ0Ω

P1P2

M
= κ

P1P2

M
, (3.7)

where

κ = gψ3

[
β
Hr

W3Cp

+
Q

P̄

]
= gψ3(Ĥr + Q/P̄ ) (3.8)

and P̄ =
∑3

i = 1 W3Pi/Wi . Now the terms within the brackets are non-dimensional
(denoted by hats) and express the density change by heat released/absorbed and
change in mixture fraction respectively. Here ψ3 is the reaction rate corresponding to
species 3 and has been chosen because it is positive.

At the plume source we will only consider a pure plume as in Morton et al. (1956)
and Caulfield & Woods (1998) so that Q(zs) = M(zs) = 0 and B(zs) = B0. In addition
we will only consider a single species at the source so that P1(zs) = P10, P2(zs) = 0 and
P3(zs) = 0. Therefore species 2 only enters the plume through entrainment and species
3 enters the plume through reaction only.

3.2. Ambient conditions

In order to examine the importance of non-uniform stratification and how the
properties of the plume depend on the coupling between species and density
entrainment, we extend the results of Caulfield & Woods (1998) to the case with
reaction. We define static ambient profiles of power law form (β � 0):

ρa = ρ0 (z/zs)
β, N2 = N2

s (z/zs)
β−1, R2 = R20(z/zs)

γ , (3.9)

where zs is the height of the source, N2
s is a reference buoyancy frequency and R20

is the concentration of species 2 at the source. In order to focus on the effects of
chemistry in a simple yet informative way, we will not examine the effects of other
species in the ambient, so we take R1(z) = 0, R2(zs) = R20 and R3(z) = 0.

3.3. Non-dimensionalization

For pure plumes it is common to scale the governing equations with the buoyancy flux
and an imposed length scale, except with unbounded plumes in uniform environments,
where a length scale does not exist and a similarity solution is possible. For a plume
in a constant-stratification ambient, MTT56 found that the maximum rise height of
the plume is determined from

H = (2α)−1/2B
1/4
0 N−3/4

s , (3.10)

as a function of source buoyancy flux and buoyancy frequency. We use this to scale
N2

s and the length in § 3.6. In addition we can form another length scale from the
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source buoyancy flux and reaction time scale tr = W2 (K ρ0 R20)
−1:

Hc =
B

1/4
0

(W2Kρ0R20)3/4
, (3.11)

which is a chemistry length scale that expresses the height over which chemistry is
important. This scale must be used in the absence of stratification but either one may
be appropriate when chemistry and stratification are of comparable order.

We use these to scale vertical height and the other quantities of interest,

z = ẑ�, B = B̂B0, Q = Q̂(2α)4/3B
1/3
0 �5/3, (3.12)

M = M̂(2α)2/3B
2/3
0 �4/3, Pi = R20P̂i(2α)4/3B

1/3
0 �5/3, (3.13)

where � is an arbitrary length scale to be defined as either H or Hc later. With this
same scaling in mind we scale the reaction rate and enthalpy of reaction as follows:

λi = ψiR20(2α)2/3�4/3B
−1/3
0 . (3.14)

In addition we scale the density, ambient species concentration and buoyancy
frequency with ρ0, R20 and N2

s , respectively, and the ambient stratification becomes

ρa = (z/ẑs)
β, N2 = (z/ẑs)

β−1, R2 = (z/ẑs)
γ , (3.15)

where ẑs = zs/� is the non-dimensional source position.
In non-dimensional form the plume equations with hats dropped are

dQ

dz
= M1/2, (3.16a)

dM

dz
=

BQ

M
, (3.16b)

dB

dz
= −

(
�

H

)8/3

N2Q − λ∗
3

[
Hr +

Q

R20P̄

]
P1P2

M
, (3.16c)

dPi

dz
= RiM

1/2 + λi

P1P2

M
, (3.16d)

where λ∗
3 = gR20(2α)4/3B

−2/3
0 �5/3λ3 and the boundary conditions are

Q = M = P2 = 0, B = 1, P1 =
P10

R20(2α)4/3B
1/3
0 �5/3

= φ at z = zs (3.17)

If we choose the chemistry length scale � = Hc then the length scale ratio in (3.16c) can
be written as Hc/H = (2α)1/2N3/4

s /(W2Kρ0R20), which expresses the relative importance
of stratification to chemical reaction. For large values of this parameter stratification
may dominate and we have the model of CLSC, whereas for small values of this
parameter chemistry may dominate. In this case we can ignore stratification, provided
the heat of reaction is significant, as long as the source concentration P1 is sufficiently
large.

3.4. No ambient stratification

For weakly stratified environments with N2 ≈ 0 the buoyancy flux is controlled by
the chemistry, while the species concentrations when the ambient concentrations are
uniform are governed by the entrainment and reaction rates. In this case we use the
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Figure 2. Numerical solutions to equations (3.18a)–(3.18b), showing Γb profiles for Hr = −10
(a), 0 (b), 10 (c), and λ3 = 0.1 (dashed line), 1 (dotted line), 10 (solid line). The circles represent
the profiles of Γb corresponding to the exact solution (3.25) in the large reaction rate limit.
Here z−1

s = 100, φ = 1, R20 = 1 and λ∗
3 = λ3.

chemistry length scale � = Hc and the governing equations reduce to

dQ

dz
= M1/2,

dM

dz
=

BQ

M
, (3.18a)

dB

dz
= −λ∗

3

[
Hr +

Q

R20P̄

]
P1P2

M
,

dPi

dz
= RiM

1/2 + λi

P1P2

M
, (3.18b)

When the reaction rate is small, i.e. κ ≈ 0, and B = 1, we recover the well-known
similarity solution of MTT56:

Q =
3

5

(
9

20

)1/3

z5/3, M =

(
9

20

)2/3

z4/3, (3.19)

for which the volume flux increases monotonically and the velocity decreases
monotonically due to entrainment.

For forced plumes one may define the non-dimensional parameter (see Hunt &
Kaye 2005)

Γb =
5Q2B

4M5/2
, (3.20)

which is a function of height. This parameter has been used to indicate whether the
plume is forced (Γb < 1) and hence jet-like, pure (Γb = 1) or lazy (Γb > 1). For our
model, where the plume is pure at the source, we can use this parameter to determine
quantitatively the deviation from pure plume behaviour with chemical reactions.

In figure 2 we plot profiles of Γb for different values of Hr and λ3 in order to
discuss three distinct behaviours of the plume. To reduce our parameter space we set
R20 = 1 and φ = 1. In addition we set λ∗

3 = λ3, since a change in this value would only
appear as an effective increase in the heat of reaction. In the first case the reaction
is exothermic (Hr < 0) so the plume density decreases in opposition to the increase in
density by entrainment. As fluid is entrained, the reaction plays a more important role
and the plume becomes lazy with a deficit of momentum, but if κ or P1 is too small
the effects of reaction never dominate and the solution continues to behave as a pure
plume described by equations (3.19). In any case, at large distances from the source
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Figure 3. (a) Variation in the heat of reaction separating bounded and unbounded solutions
as a function of the source concentration φ for λ3 = 0.1 (dotted line) and 10 (solid line).
(b) Boundary separating lazy and forced plumes as a function of Hr and λ3 for φ = 1. Here
z−1
s = 100, W1 = W2 = 1, R20 = 1 and λ∗

3 = λ3.

species P1 will be completely consumed, and we can use the similarity solutions with
a virtual origin correction (Caulfield & Woods 1995).

In the second case there is no heat generated or absorbed (Hr = 0) but for this
reaction the production of species 3 acts to increase the average density of the plume.
Since the chemical components have different densities, the buoyancy flux will be a
function of the average mixture concentration, Ȳ , which is coupled to the entrainment
and reaction rates. Therefore, the plume will be dominated by momentum with jet-like
characteristics (Γb < 1) while there is a sufficient concentration of species 1, but will
behave as a pure plume at larger distances from the source, where the reaction is
weak. Finally, in the endothermic case we expect similar characteristics, although with
an approximately constant κ . Since the heat of reaction is relatively large, the density
difference will decrease and the plume will have jet-like characteristics. Ultimately the
reaction will absorb a sufficient amount of thermal energy and the density difference
will lead to a negatively buoyant plume that will behave as a fountain (Bloomfield &
Kerr 2000).

We can quantify the critical conditions for the plume to be bounded or unbounded
as a function of the chemically related parameters φ, Hr and λ3. This is shown
in figure 3. For relatively small source concentrations and heats of reaction, the
chemistry will be unable to decrease the density below the ambient and the plume will
be unbounded. For a large source concentration and heat of reaction, the plume will
eventually become neutrally buoyant and spread out horizontally. We have quantified
the transition zone between lazy and forced plumes in figure 3. Because of the term
Q/P̄ in (3.8), the heat of reaction and reaction rate must be sufficiently large for an
effectively exothermic reaction to exist.

3.5. Large reaction rate and large heat of reaction

When the reaction is very fast, i.e. K 	 1, the ambient chemical species 2 in the plume
is consumed on a time scale much shorter than the residence time in the plume. As
a result the concentration of species 2 in the plume is very small and the vertical
gradient in the flux P2 is approximately zero (dP2/dz ≈ 0). Then the constancy of
P2 shows that λ2P1P2M

−1 ≈ −M1/2, where we require λ2P2 = O(1) since λ2 	 1 and
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P2 � 1. This order relation expresses equality of entrainment and reaction time scales.
Therefore, by an infinite reaction we mean that the entrainment rate is balanced by
the reaction rate, although we still require Da to be small for the top hat species
profiles to apply.

This result may be substituted into the equations for B and P1 to give

dQ

dz
= M1/2,

dM

dz
=

BQ

M
, (3.21)

dB

dz
= −M1/2χ,

dP1

dz
= −λ1

λ2

M1/2, (3.22)

where χ = −λ∗
3Hr/λ2 and we have assumed that Q/P̄ � Hr to obtain an explicit

solution. We introduce χ , which represents the heat of reaction, for ease of
presentation. It is positive for endothermic reactions and negative for exothermic
reactions. Once the source chemical is completely consumed so that P1 = 0, the
reaction stops and we have the usual plume equations of MTT56 from that height
up. There is a boundary layer in which the buoyancy flux tends to a constant, which
we ignore.

The buoyancy and volume flux equations can be combined and integrated to obtain

B = 1 − χQ, (3.23)

where the deviation from pure plume behaviour is explicitly expressed by the
exothermic/endothermic term χ . The three equations (3.21) and (3.23) can be
combined to form a single equation in terms of volume and momentum fluxes,
and integrated to obtain

dQ

dz
=

(
5χ

6

)1/5

Q2/5 (ε − Q)1/5 , (3.24)

where ε = 3/2χ .
Now (3.24) can be integrated to give

(
5|χ |

6

)1/5

(z − zs) =

∫ Q

0

q−2/5

(|ε| ∓ q)1/5
dq =

5

3
|ε|−1/5Q3/5

2F1(1/5, 3/5; 8/5; Q/ε),

(3.25)
in terms of hypergeometric functions, and where the choice of signs is − for χ > 0
and + for χ < 0. In both cases, we find for small z − zs

Q =

(
3

5

)5/3 (
5εχ

6

)1/3

(z − zs)
5/3. (3.26)

In the endothermic case with χ > 0, the plume becomes a fountain, provided φ is not
too small, and terminates at Q = ε with

(
5χ

6

)1/5

(zmax − zs) =
5

3
ε2/5 �(8/5)�(4/5)

�(7/5)
, (3.27)

where � is the Gamma function. In the exothermic case, the plume continues to rise
and behaves for large z as

(
5|χ |

6

)1/5

(z − zs) =
5

3
Q2/5 �(8/5)�(2/5)

�(3/5)�(7/5)
. (3.28)
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Figure 4. Numerical solution to (3.16a)–(3.16d) showing Q, P1 (solid); M , P2 (dashed); B , P3

(dotted) for Hr = −2 (a, d), 0 (b, e) and 2 (c, f ). Here z−1
s = 100, φ = 1, W1 = W2 = 1, R20 = 1,

λ3 = 10, λ∗
3 = λ3 γ = −0.1 and β = 1.

The mass flux hence has a (z − zs)
5/2 dependence. Of course, this is a transitory phase

until P1 = 0, at which the usual MTT56 solution applies again. This scenario is similar
to plumes with decreasing source strengths (Scase, Caulfield & Dalziel 2006), in which
there is a narrowing of the plume at some height.

The parameter Γb starts at 1 and tends to −∞ as z → zmax in the endothermic case.
It starts at 1 and grows slowly in the exothermic case, before ultimately returning to
1 when the reaction ends. We have plotted the profiles of Γb against the numerical
solution in figure 2 for λ3 = 10. The reduced model yields a good approximation until
the concentration of species 1 has diminished to a sufficiently small value so that
dP2/dz ≈ 0 is no longer valid. At this point the reaction no longer dominates the
buoyancy flux and the plume transitions to the usual plume model of MTT56 with
similarity solutions (3.19).

3.6. Stratified ambient

When reaction and stratification are significant (H ∼ Hc) there is a non-trivial coupling
between the change in buoyancy flux by entrainment and reaction. Here we extend
the model of Caulfield & Woods (1998) to investigate the effects of reaction, and for
that reason we choose the same length scale � = H . We have solved the governing
equations (3.16a)–(3.16d) numerically and plotted our results in figures 4 and 5. Since
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we are mainly interested in the effect of chemistry on the maximum rise height, we
only vary the chemically related parameters and set the ambient density stratification
to be linear, i.e. β = 1. In addition we fix the chemical concentration ratio φ = 1 in
order to reduce our parameter space and concentrate on the effect of λ, Hr and γ .

In figure 4 we have plotted the profiles for a positive, zero and negative heat of
reaction Hr to be consistent with the rest of the paper. We have chosen to display a
large rate constant, λ3 = 10, to elucidate the effects of reaction and a power coefficient
γ = −0.1, which one would likely encounter in industrial settings. The species fluxes
in the plume are a function of entrainment and reaction rate, which of course is
dependent on the heat of reaction and average mixture density. P1 has a maximum
value at the source and decreases with height by reaction. On the other hand, P2

has a minimum value at the source and increases by entrainment and decreases
by reaction. Similarly, P3 increases with reaction from zero initially and has the
same characteristics as species 1 since dP1/dz ∝ dP3/dz. The reaction will have the
largest contribution to the plume dynamics near the source, since species 1 has a
high concentration. Far above this point the source species concentration will be
sufficiently small and the plume will be governed by the model of MTT56.

The buoyancy flux is controlled by two processes: entrainment of dense ambient
fluid and exothermic or endothermic chemical reactions. In the case of a constant
ambient density gradient, the former always acts to decrease the buoyancy flux and
ultimately force the plume to become neutrally buoyant and spread out horizontally.
For environments with a decreasing stratification in height, the plume will be
unbounded, but we will not discuss this case further (Caulfield & Woods 1998).
The reaction will cause the buoyancy flux to increase near the source for exothermic
reactions but decrease faster for endothermic reactions than from entrainment alone.
The momentum flux grows with distance from the source but ultimately becomes
zero, which corresponds to the maximum rise height when the plume density is equal
to the ambient. For an exothermic (or endothermic) reaction this point will occur at
a larger (or smaller) value compared to a plume with no reaction. Finally, the volume
flux will always increase with distance from the source, although it will be coupled
to the reaction dynamics through the entrainment rate. Since we have assumed the
plume fluid to be incompressible, the plume radius cannot expand or contract due to
compressibility effects with an exothermic or endothermic reaction, respectively. In
§ 4 we will allow for compressibility effects, which will appear as a source term on the
volume flux equation.

We have plotted the maximum rise height Hmax = zmax/2.57, which is 1 for the
exact solution of Morton et al. (1956), for which no reaction is present, in figure 5.
The ambient species concentration R2 is allowed to vary as a power law function,
so for γ < 0 the concentration decreases with height and for γ > 0 the concentration
increases with height. In general, when γ � 0 the ambient species will only exist at
levels very close to the source and as a result the plume can only entrain a very small
amount of this chemical. This leads to a small amount of reaction and the maximum
rise height will be approximately the same at MTT56. When γ 	 1 the ambient
species concentration is very large above z = 1. Since this chemical concentration
is also very large here, species 1 gets consumed rapidly in this region regardless of
reaction rate and Hmax is approximately the same for all rate constants, λ3. In addition
the maximum rise height increases with an exothermic reaction and decreases with
an endothermic reaction, as we expect.

For γ > 0.5, the maximum rise height, Hmax, is larger in the exothermic case for
smaller reaction rate constants. In this region species 2 increases rapidly above



304 D. T. Conroy and S. G. Llewellyn Smith

–2 0 2 4
1.00

1.50

2.00

2.50
(a) (b) (c)

Hmax

γ γ γ

Exothermic

–2 0 2 4
0.85

0.90

0.95

1.00

–2 0 2 4
0

0.2

0.4

0.6

0.8

1.0
Endothermic

Figure 5. Numerical solutions showing the maximum rise height of the plume, Hmax, for
Hr = −10 (a), 0 (b), 10 (c) and λ3 = 0.1 (dashed line), 1 (dotted line), 10 (solid line). Here
z−1
s = 100, φ = 1, W1 = W2 = 1, R20 = 1, λ∗

3 = λ3 and β = 1.

z = 1 and the plume entrains a large amount of this chemical. Subsequently, the
reaction rate is very fast, which acts to increase the buoyancy flux and entrainment
rate. Even though the exothermic reaction acts to decrease the plume density, the
entrainment rate is large in a region of large density difference, and consequently the
plume does not rise as high. In addition, for γ 	 1 and Hr = 0, the maximum rise
height Hmax ≈ 1 and is therefore independent of the chemical reaction. In this case
λ3Q/F̄ ∼ (z−1

s z)−γ ≈ 0 for z−1
s z 	 1 and γ 	 1. Therefore the density is dominated by

species 2, which has the same mass fraction as the source fluid, and the production
of species 3 by reaction has a negligible effect. As γ → 0 the ambient species
concentration is approximately uniform, R2 ≈ 1 and the maximum rise height has a
minimum value in this region. Here the reaction is relatively strong and the production
of heavier species 3 leads to an increase in the plume density. Alternatively, for γ � 1
and Hr = 0, R2 � 1 (except near z = 0) and the reaction is weak. Therefore the mixture
density is dominated by species 1 and Hmax ≈ 1.

4. Non-Boussinesq plume
4.1. Plume equations

When the density difference between plume and ambient becomes large, the
Boussinesq assumption breaks down. In this case we need to reformulate the problem
without this assumption. We follow Rooney & Linden (1996) and define fluxes with
top hat profiles as

πρ0Q
′(z) = 2π

∫ ∞

0

rwρ dr = πρ̄w̄b2, (4.1a)

πρ0M
′(z) = 2π

∫ ∞

0

ρrw2 dr = πρ̄w̄2b2, (4.1b)

πV ′(z) = 2π

∫ ∞

0

rw dr = πw̄b2, (4.1c)

πρ0P
′
i (z) = 2π

∫ ∞

0

ρYirw dr = πρ̄Ȳiw̄b2 (4.1d)
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for mass, momentum, volume and species respectively (note the factor of ρ0 on the left-
hand sides). We have used primes to denote non-Boussinesq variables, to distinguish
the model from the previous sections. Following the procedure for a Boussinesq
plume the appropriate equations can be derived by integrating equations (2.7a)–(2.7d)
across the plume, yielding

dQ′

dz
= 2α

(
ρa

ρ0

)1/2

M ′ 1/2, (4.2a)

dM ′

dz
= g

(
ρa

ρ0

− Q′

V ′

)
Q′V ′

M ′ , (4.2b)

dV ′

dz
= 2α

M ′ 1/2

(ρa/ρ0)1/2
− σ

Q′V ′

M ′ , (4.2c)

dP ′
i

dz
= 2αRi

(
ρa

ρ0

)1/2

M ′ 1/2 +
ωi

ρ0

Q′V ′

M ′ . (4.2d)

With these definitions the density is ρ̄ = ρ0Q
′/V ′, the velocity is w̄ = M ′/Q′ and

the plume radius is b2 = Q′V ′/M ′. In this analysis we have used the entrainment
assumption ue = αw(ρ/ρa)1/2, which is consistent with the experimental results of
Ricou & Spalding (1961) and has been used by Rooney & Linden (1996) and Woods
(1997). To compute the right-hand sides of equations (4.2c) and (4.2d) we express the
concentrations in terms of fluxes using P ′

i = ρȲiV
′/ρ0. Then

σ
Q′V ′

M ′ = Ωρ2Y1Y2

Q′V ′

M ′ = ρ0Ω
P ′

1P
′
2

M ′ , (4.3)

ωi

ρ0

Q′V ′

M ′ = ±ρ0KWi

W1W2

P ′
1P

′
2

M ′
Q′

V ′ = ψi

P ′
1P

′
2

M ′
Q′

V ′ . (4.4)

In addition we can define a buoyancy flux as in equation (3.1c); this gives

B = gV ′
(

ρa

ρ0

− Q′

V ′

)
, (4.5)

and the momentum flux equation becomes

dM ′

dz
=

BQ′

M ′ . (4.6)

The governing equation for B is then

dB

dz
= −N2V ′ − κ

ρa

ρ0

P ′
1P

′
2

M ′ , (4.7)

where

κ = gψ3

[
β
Hr

W3Cp

+
Q′

P̄ ′

]
= gψ3(Ĥr + Q/P̄ ′), (4.8)

and P̄ ′ =
∑3

i=1 W3P
′
i /Wi . Finally, the boundary conditions at the source are

Q′ = M ′ = 0, B = B0, V ′ = B0/g, P ′
2 = P ′

3 = 0, P ′
1 = P ′

10 at z = zs. (4.9)

Note that these equations are formally identical to the Boussinesq equations for a
uniform ambient density and negligible reaction rate but differ in general, owing to
the factor (ρa/ρ0)

1/2 and Q′/V ′ appearing in the equations. One important difference
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is the extra term on the volume flux equation (4.2c) that allows the plume to expand
or contract with an exothermic or endothermic reaction respectively.

Using the scaling of § 3.3 with the density scaled with ρ0 and V ′ scaled the same as
Q′, we can express the plume equations in non-dimensional form with hats dropped
as

dQ′

dz
= ρ1/2

a M ′ 1/2, (4.10a)

dM ′

dz
=

BQ′

M ′ , (4.10b)

dB

dz
= −

(
�

H

)8/3

N2V ′ − ρaλ
∗
3

[
Hr +

Q

R20P̄

]
P ′

1P
′
2

M ′ , (4.10c)

dV ′

dz
= 2α

M ′ 1/2

ρ
1/2
a

− R20λ3

[
Hr +

Q

R20P̄

]
P ′

1P
′
2

M ′ (4.10d)

dP ′
i

dz
= Riρ

1/2
a M ′ 1/2 + λi

P ′
1P

′
2

M ′
Q′

V ′ , (4.10e)

and the boundary conditions are

Q′ = M ′ = P ′
2 = 0, B = 1, V ′ = η, P ′

1 = φ at z = zs, (4.11)

where η = g−1(2α)−4/3B
2/3
0 �−5/3.

We do not pursue the stratified non-Boussinesq case: it is relevant only to situations
like volcanic plumes with very hot gases rising high into the stratified atmosphere.
In engineering applications with non-Boussinesq plumes, stratification does not play
an important role. Of course this case can be investigated as a straightforward
combination of § 3.6 and of § 4.1.

4.2. No ambient stratification

Following § 3.4, we take � = Hc and the equations take on a simpler form when
the vertical density and species gradients go to zero. When Hr + Q/P̄R20 ≈ 0 the
reaction has a negligible effect on the plume dynamics and we may combine the
above equations with B = 1 to obtain

Q′ =
3

5

(
9

20

)1/3

z5/3, M ′ =

(
9

20

)2/3

z4/3. (4.12)

These solutions are the analogue of the Boussinesq similarity solutions and may be
shown to be equivalent when ρ = ρ0. We should note that ρa = ρ0 when the ambient
density is uniform. From these solutions we can define a non-dimensional source
parameter as (Carlotti & Hunt 2005)

Γnb =
5BQ′2

4M ′5/2
, (4.13)

which indicates whether the plume is dominated by buoyancy or momentum.
Following the previous sections we set φ = 1, R20 = 1, η = 1 and λ∗ = λ3 in order to

reduce our parameter space. Therefore, we focus on the effect of heat of reaction and
reaction rate on the plume dynamics and the differences between the Boussinesq and
non-Boussinesq formulations. In figure 6 we plot profiles of Γb and Γnb as a function
of the reaction rate for a strongly exothermic and endothermic reactions. The two
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Figure 6. Numerical solution to the Boussinesq and non-Boussinesq equations for no ambient
stratification showing Γb (dashed line) and Γnb (solid line) corresponding to λ3 = 0.1 (a, d), 1
(b, e) and 10 (c, f ) and Hr = −10 (a–c) and 10 (d–f ). The circles represent the infinite reaction
model. Here z−1

s = 100, φ = 1, W1 = W2 = 1, η = 1, R20 = 1 and λ∗
3 = λ3.

models are identical in form except for the factor Q′/V ′, multiplying the reaction
rate in (4.10e). This term is always less than one (otherwise we have a fountain) and
dP ′

1/dz is effectively reduced in comparison to the Boussinesq model. The buoyancy
flux in the non-Boussinesq case can be shown by comparing (4.10c) and (4.10e) to
scale as B − 1 ∼ Hr ρ−1(P ′

1 − φ). Since ρ < 1 near the source (although it approaches 1
for large z), B in the non-Boussinesq formulation is larger for an exothermic reaction
and smaller for an endothermic reaction. Therefore, for regions close to the source the
non-Boussinesq model behaves more like a plume for the exothermic case (Γnb >Γb)
and more like a jet in the endothermic case (Γnb < Γb). Since the buoyancy flux, in
the absence of stratification, is controlled by reaction, we expect the vertical gradients
of B and P1 to be similar. Furthermore the source parameters (Γb and Γnb), being
functions of P1, will have the largest variation in regions of strong reaction rate. For
this reason Γb > Γnb for λ	 1 at intermediate heights, where the reaction is stronger
in the Boussinesq model and Γb < Γnb for larger heights, where the reaction rate is
slower (due to a small concentration of species 1).

We have plotted the plume radius as a function of height in figure 7 for the
Boussinesq and non-Boussinesq formulations. Near the source, the density of the
plume is small relative to the ambient and since the mass flux of both formulations are
the same, the volume flux for the non-Boussinesq plume is larger (Woods 1997). The
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Figure 7. Numerical solution to the Boussinesq (dashed line ) and non-Boussinesq (solid line)
equations for no ambient stratification, showing the plume radius b corresponding to Hr = −10
(a), 0 (b) and 10 (c). Here λ3 = 1, z−1

s = 100, φ = 1, W1 = W2 = 1, η = 1, R20 = 1 and λ∗3 = λ3.
The dot-dashed line is the Boussinesq infinite reaction rate solution.

effect of an exothermic reaction is then to make the expansion larger, since the density
difference will have a greater sustained value above the source. At sufficiently large
distances above the source, where species 1 is sufficiently consumed, the plume density
will approach the ambient density and the volume flux will behave as a Boussinesq
plume. In the case of an endothermic reaction the absorption of thermal energy will
cause the density of the plume to increase relative to the ambient. For sufficiently
large heats of reaction the plume density will be larger than the ambient density and
since the mass flux for both formulations is the same, the volume flux will be smaller
for the non-Boussinesq formulation. Since the volume flux for the non-Boussinesq
formulation experiences a change in volume with reaction, the plume radius will
narrow for large endothermic reactions as opposed to the Boussinesq model.

5. Conclusion
We have developed a model for a plume rising into an unbounded ambient with

a reaction between the source plume chemical species and the ambient with a non-
negligible heat of reaction, in the case of a second-order non-reversible chemical
reaction. This model extends the work of CLSC to account for a source term on the
buoyancy flux, which is a function of the heat released or absorbed. We first investigate
the limiting case of a Boussinesq plume, where density effects are only important on the
buoyancy terms. The difference with respect to the original plume equations of MTT56
is an extra term in the buoyancy flux equation, which depends strongly on the species
flux equations. In the special case of an unstratified ambient, we can obtain a similarity
solution for an infinite reaction rate, which indicates that the volume (Q ∝ z5/2) and
momentum (M ∝ z3) flux equations scale on a different length scale to that of a
plume without reaction (e.g. Q ∝ z5/3 and M ∝ z4/3). Furthermore, we showed that
the reaction will cause the plume to be ‘lazy’ for an exothermic reaction and ‘forced’
for an endothermic reaction. In the former case the plume ultimately asymptotes to
a pure plume when the sources species is consumed, but in the latter case a fountain
may form provided the reaction rate and heat of absorption are sufficiently large.
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For a density and chemically stratified ambient we examined the effects of reaction
rate and heat of reaction on the maximum rise height of the plume in comparison
to the linear density model of MTT56. For an exothermic plume with a large
reaction rate the increase in buoyancy will increase the velocity and consequently the
entrainment rate near the source. Since the ambient density is larger here (due to
the linear density stratification), the decrease in buoyancy flux by entrainment will
dominate the increase in buoyancy flux by reaction. We expect this behaviour to exist
in general provided the ambient has a stable density gradient. Moreover, for strongly
decreasing ambient chemical stratifications the maximum rise height will be the same
as for a non-reacting plume, since only a small amount of species 2 can be entrained.

Finally, we have extended our model to a non-Boussinesq plume using an
entrainment rate that depends on the ratio of plume to reference density. In this
case the two formulations are only comparable when the plume density is similar to
the ambient density, which is always true at large heights above the source. Either
way, an exothermic reaction will cause the reaction rate to decrease, since it depends
on the density, and an endothermic reaction will cause the reaction rate to increase.
This will have an important effect on the source parameter Γnb and plume property
profiles since the reaction rate is non-uniformly modified. Furthermore, the plume
radius can have very different profiles, owing to the effects of compressibility on
the non-Boussinesq formulation. For an exothermic reaction the plume will expand
at early times compared to a Boussinesq plume as long as the density change by
heat release dominates the decrease in density by entrainment. Alternatively, for an
endothermic reaction the plume contracts at early times and may become a fountain
for sufficiently large reaction rates and heat absorption.
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